
Kramers–Krönig relation of graphene conductivity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 175222

(http://iopscience.iop.org/0953-8984/20/17/175222)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 11:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/17
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 175222 (6pp) doi:10.1088/0953-8984/20/17/175222

Kramers–Krönig relation of graphene
conductivity
Daqing Liu and Shengli Zhang

Department of Applied Physics, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic
of China

Received 26 January 2008, in final form 12 March 2008
Published 7 April 2008
Online at stacks.iop.org/JPhysCM/20/175222

Abstract
Utilizing a complete Lorentz-covariant and local-gauge-invariant formulation, we discuss the
response of graphene to arbitrary external electric fields. The relation, which we call here the
Kramers–Krönig relation, between the imaginary part and the real part of ac conductivity is
given. We point out that there exists an ambiguity in the conductivity computing, attributed to
the ‘poor’ behavior in the ultraviolet region. We argue that to study the electrical response of
graphene completely, the non-perturbational contribution should be considered.

1. Introduction

Graphene, a flat monolayer of carbon atoms tightly packed
into a two-dimensional honeycomb lattice, has spawned many
theoretical and experimental focuses. As stated in [1],
graphene plays the role of a bridge between condensed
physics and high energy physics. This is attributed to the
massless Dirac fermion behavior of quasielectrons in graphene,
i.e. we can treat the quasielectrons in graphene as ultimately
relativistic particles.

This behavior also brings about many unusual properties
of graphene, such as its ac and dc conductivity; much
attention [2–5] has been given to such topics. However, there
exist discrepancies in the problem, including the discrepancies
between theories and experiments on dc conductivity, the
famous missing ‘ 1

π
factor’, and conflict between different

theoretical calculations [6]. So far, different theories are mostly
based on the perturbational approximation, even calculations
may be performed by multi-loop diagrams [7].

We introduce a correlation function with respect to
only one variable, the invariant amplitude of the spatial-
time position, x , to study the graphene conductivity non-
perturbationally. From the correlation function, we show
that there is relation between the imaginary part and the
real part of the ac conductivity. The function is very close
to a spectral function and we find that the perturbational
calculations for conductivity only include contributions from
free valence-conduction electron pairs. Therefore, besides
these contributions, to compute conductivity completely we
should also consider other factors, such as excitation or
impurity. To check the statement, we perform a perturbational
calculation for the dc conductivity using quantum field theory.

This technique guarantees that the formulation is Lorentz-
covariant and local-gauge-invariant. We point out that there
exist discrepancies among different theoretical calculations,
attributed to poor behavior in the ultraviolet vicinity of δ-
functions.

We organize the paper as following: in section 2, we
discuss the electrical response to arbitrary external electric
field. A discussion on obtaining dc conductivity utilizing Kubo
theory [8] is also given. The relation between the imaginary
part and the real part of ac conductivity is listed in section 3.
We show explicit perturbational computing for conductivity in
section 4 and a brief discussion in section 5.

2. The conductivity under arbitrary external fields

To perform the calculation we first give the second quantization
of graphene briefly. The Lagrangian density is

L = ψ̄(iγμ∂
μ − m)ψ, (1)

where ∂μ = ∂
∂xμ

, ψ̄ = ψ†γ0, m is the mass of a quasiparticle
(to clarify, we here endow the quasielectrons with nonzero
mass), and γ s are

γ0 = β = τ3, γ1 = βτ1, γ2 = βτ2,

where τ1, τ2, and τ3 are three Pauli matrices. In this paper,
the repeated indices are generally summed, unless otherwise
indicated. Furthermore, h̄ = vF = e = 1 are always set.

The Hamiltonian is then [5]

H =
∫

d2rψ†(r)β(−iγi∂
i + m)ψ(r). (2)
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Here, indices i, j , etc generally run over two spatial coordinate
labels, 1, 2, (while Greek indices μ, ν, and so on, run over
three spatial-time coordinate labels 0, 1, 2 with x0 the time
coordinate.)

Under the second quantization, we have

ψ(x) =
∫

d2p

(2π)2
√

2p0
[apu(p)e−ipx + b†

pv(p)e
ipx ],

ψ̄(x) =
∫

d2p

(2π)2
√

2p0
[a†

pū(p)eipx + bpv̄(p)e
−ipx ],

where p0 = √
m2 + p2 > 0. Solutions to positive energy u(p)

and to negative energy v(p) satisfy respectively

u†u = 2p0, ūu = 2m, uū = p/+ m,

v†v = 2p0, v̄v = −2m, vv̄ = p/− m.
(3)

The explicit forms of u and v are irrelevant. For
simplification, we call the operator a†

p (ap), which creates
(annihilates) quasielectrons in the conduction band, the
creation (annihilation) operator which creates (annihilates)
electrons, at the same time, we call the operator b†

p (bp), which
annihilates (creates) electron in the valence band, the creation
(annihilation) operator which creates (annihilates) hole. Both
electron and hole have positive energy, p0.

Since in the perturbational ground state, the valence
band is completely filled while the conduction band is
empty, the energy of the ground state is nonzero, Egnd =
− ∫

d2p
√

m2 + p2. To obtain a Lorentz invariant ground state,
we perform a subtraction for all the states, E → E − Egnd.
Under such subtraction, each physics quantity, such as energy,
current, etc should be in its normal form [9].

With the substitution i∂μ → pμ, we read the Hamiltonian
operator eventually as

H =
∫

d2p p0(a
†
pap + b†

pbp). (4)

When concerning electromagnetic interactions we should
make a substitution of pμ → pμ − eAμ in equation (2).
Denoting Aμ = gμνAν with metric matrix g =
diag{1,−1,−1}, the interacting Lagrangian density is Lint =
−eψ̄γμψAμ = −JμAμ and the corresponding Hamiltonian is

Hint = −
∫

d2xLint =
∫

d2xJμ(x)A
μ(x), (5)

where, just as pointed out above, Jμ(x) is in the normal form:

Jμ(x) = : ψ̄γμψ(x) :
=

∫
d2p d2p′

(2π)4
√

2p0 p′
0

{a†
pa′

pei(p−p′)x ū(p)γμu(p′)

+ a†
pb†

p′ei(p+p′)x ū(p)γμv(p
′)

+ bpap′e−i(p+p′)x v̄(p)γμu(p′)

− b†
p′bpe−i(p−p′)x v̄(p)γμv(p

′)}.
Unlike some papers, we here introduce a factor 1√

2 p0

associated with momentum integration, which is attributed to
the Lorentz-covariant [9, 10]. Both the electron number and the

hole number are conserved without interaction. However, the
only conserved quantity is their difference when interactions
are included,

N =
∫

d2x : ψ†ψ : =
∫

d2p

(2π)2
(a†

pap − b†
pbp). (6)

Generally, the interacting Hamiltonian of graphene in
external field Aμ(x0,x) is described by equation (5). The
density operator is ρ = ρ0 + δρ, where ρ0 is the equilibrium
density operator and δρ is the leading order correction with
respect to the external field.

In the Heisenberg picture we have

iδρ(x0) = [Hint, ρ0]. (7)

Therefore [2],

δρ(x0) = −i
∫ x0

−∞
dx ′

0dx′[Jμ(x
′
0x

′), ρ0]Aμ(x ′
0x

′). (8)

Due to the spatial and time translation invariant, at zero
temperature, on fixed time x0

0 , the current density at arbitrary
position is

〈Jμ(x
0
0)〉 = Tr(δρ(x0

0)Jμ(x
0
00))

=
∫ 0

−∞
dx0 d2x Tμν(x0x)A

ν(x0 + x0
0x), (9)

where
Tμν(x0x) = i〈|[Jν(x0x), Jμ(00)]|〉 (10)

with the notation of the ground state |〉.
Noticing in equations (9) and (10), that the variable x0 is

defined on (−∞, 0), we expand the range of x0 to (−∞,∞)

as

Tμν(x) = iθ(x0)〈|[Jμ(0), Jν(x)]|〉
+ iθ(−x0)〈|[Jν(x), Jμ(0)]|〉, (11)

where θ(x0) is a step function: θ(x0) = 1 for x0 � 0, θ(x0) =
0 for x0 � 0. Tensor Tμν(x) is vanishing for space-like x ,
i.e. the support of tensor Tμν is a time-like three-dimensional
vector x .

Our expansion is different to the one in [2], where Tμν has
only a forward term or backward term.

The conductivity should be independent of the gauge
transformation. This means that, under a local gauge
transformation Aν → A′ν = Aν − ∂ν f , where f is an
arbitrary function with f (x0 = x0

0) = f (x0 = −∞) = 0, the
current density in equation (9) should be invariant. Integrating
equation (9) by parts we find that this requirement is satisfied
provided ∂νTμν = 0 everywhere. The statement can be proven
by the following: (1) charge conversation, i.e. ∂ν Jν ≡ 0;
(2) ∂

∂xμ
θ(x0) = − ∂

∂xμ
θ(−x0) = δ0μδ(x0); (3) the equal time

commutation relation [J0(tx), Jμ(ty)] = 0.
Tμν(x) is written as

Tμν(x) = −(∂μ∂ν − gμν�)�(x), (12)

where � ≡ ∂μ∂μ = ∂2

∂x2
0
− ∂2

∂x2
1
− ∂2

∂x2
2
, �(x) is a scalar function

with respect to only one variable, the invariant amplitude of
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the three-dimensional spatial-time vector x . After defining
the Fourier transformation of function f (x) as f (q) =∫

dx dt f (x)eiqx with qx ≡ qμxμ, we have, then,

Tμν(q) = (qμqν − q2gμν)�(q
2), (13)

where �(q2) is the only function with respect to the invariant
amplitude of q .

From equation (9) it seems that Jμ is time dependent in the
time-invariant external electric field. But this is not true. It is
enough to illustrate it by a special gauge, Aν = (0, E x0, 0) or
Aν = (0,−E x0, 0), where A is a three-dimensional potential
and E is the external electric field, Eν = (E, 0). It is easy to
see that

Jμ(x
0
0) = −E

∫ 0

−∞
dx0 dq0

2π
e−iq0 x0 gμ1q2

0�(q0)(x0 + x0
0),

(14)
where �(q0) ≡ �(q2

0 ,q = 0). J0 (charge density) and J2 are
both vanishing and only J1 	= 0:

J1(x
0
0) = E

∫
dq0

2π
q2

0�(q
2
0 )

∫ x0
0

−∞
dx0 x0eiq0 x0+εx0 eiq0 x0

0

= E
∫

dq0

2π
�(q2

0 )
q2

0

q2
0 + iq0ε

(1 + iq0x0
0)

≡ Eσ(x0
0), (15)

where the additional factor eεx0 (ε is a positive infinitesimal) is
to guarantee that the external field is introduced adiabatically.

When ε → 0, q2
0

q2
0 +iq0ε

→ 1, we can replace q2
0

q2
0 +iq0ε

by

unity. Furthermore, since �(q2
0 ) is an even function of q0,∫ dq0

2π �(q
2
0 )iq0x0 ≡ 0. We finally have a time-independent

conductivity

σ =
∫

dq0

2π
�(q2

0 ) ≡ �(x0 = 0,q = 0), (16)

where, to obtain a meaningful quantity, we should perform a
subtraction of �, i.e. we make a substitution: �(x0 = 0,q =
0) → �(x0 = 0,q = 0) − �(x0 = −∞,q = 0). In
Fourier space, this subtraction is the substitution �(q0,q) →
�(q0,q)−�(q0 = 0,q). In this paper, we always make such
a subtraction for all the physical quantities.

As expected, we obtain a time-independent current density
for a steady external field.

It is not difficult to deduce the response to arbitrary
external fields. Supposing the external electric field is ac
with frequency ω, A = (0, E0 eiωx0 , 0)eεx0 and substituting
the potential into expression (9), we find that only the x-
component of current density is nonvanishing,

J1(x0) = E0eiωx0

∫
dq0

2π
�(q2

0 , 0)
iq2

0

q0 − ω + iε
. (17)

Since this potential stands for external electric field (E1, E2) =
(iω E0eiωx0 , 0), the complex conductivity is

σ =
∫

dq0

2π
�(q2

0 , 0)
q2

0

ω(q0 − ω + iε)
(18a)

= 1

ω

∫
dq0

2π
�(q2

0 , 0)q0 +
∫

dq0

2π
�(q2

0 , 0)

× q0

q0 − ω + iε
. (18b)

Obtaining the dc conductivity from equations (18a) and (18b)
corresponds to the results obtained from the famous Kubo
theory. However, it is not obvious whether we can obtain
dc conductivity (16) from the limit of equation (18a):
firstly, to obtain equation (18b) from (18a) we need
not only convergence of all the integrations, such as∫ dq0

2π �(q
2
0 , 0) q2

0
ω(q0−ω+iε) , etc but also proper subtraction of

physical quantities. Secondly, when we choose ω = 0 directly
in equation (18b), we meet an uncomfortable situation: the first
term in equation (18b) is an ambiguous 0

0 . To obtain the correct
dc conductivity we should perform the computation as follows:
we calculate the ac conductivity in the course of nature from
equation (18) at ω 	= 0, with proper subtraction. At last we
read the dc conductivity utilizing the limit of ω → 0. This
was pointed out by Kubo [8], which implies that, compared to
results in [3], the results in [4] are correct. Of course, all the
results in [3, 4] are obtained by a perturbational approach.

After suitable subtraction, the ac conductivity is

σ =
∫

dq0

2π
�(q2

0 , 0)
q0

q0 − ω + iε
. (19)

Generally, �(q2
0 , 0) is not convergent or well defined, as will

be shown by perturbative calculation in section 4. This is
relevant to the wick definition of the δ− function. Therefore,
in order to obtain a meaningful physical result, we need to
perform subtraction to cancel divergence. For instance, in [6]
the author has proposed a soft δ− function. The subtraction
should meet some physical criteria. For instance, as found in
the above paragraph, to obtain the result in equation (19) from
equations (18), after the subtraction � is still a function of q2

0
rather than a function of q0 in Fourier space. In section 4 we
shall show an explicit subtraction for �(x0, q).

3. Kramers–Krönig relation of graphene
conductivity

In this section we show a relation between the imaginary part
and the real part of graphene conductivity.

We first give a non-perturbational proof that�(q2) is real.
�(q2) is real at q2 < 0 obviously, the only need is to prove
that �(q2) is also real at q2 > 0.

At q2 > 0, after inserting the completed intermediate
states

∑
� |�〉〈�|, we have for T ≡ Tμ

μ (q),

T =
∫

d3x d3 p eiqx

(2π)2
i(θ(x0)− θ(−x0))

× (eipx − e−ipx)s(p)θ(p0),

where the spectral function s(p) is defined as

2πs(p) =
∑
�

〈|Jμ(0)|�〉〈�|Jμ(0)|〉(2π)3δ3(p − p�).

(20)

The spectral function s(p), which is very close to the
state density, includes not only perturbational contributions,
but also non-perturbational contributions. To study the non-
perturbational contributions, one should consider, for instance,
excitations.

3
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Inserting
∫ ∞

0 dtδ(p2 − t) ≡ 1 at p2 > 0, we obtain

T =
∫ ∞

0
dts(t)

∫
d3xeiqx i(θ(x0)− θ(−x0))I, (21)

where

I =
∫

d3 p

(2π)2
θ(p0)δ(p2 − t)(eipx − e−ipx)

=
∫

d3 p

(2π)2
e−ipxδ(p2 − t)(θ(−p0)− θ(p0)).

Utilizing

i
∫

d3 pe−ipx

(2π)2
[θ(x0)θ(p0)+ θ(−x0)θ(−p0)]δ(p2 − t)

= −
∫

d3 p

(2π)3
e−ipx

p2 − t + iε
,

i
∫

d3 pe−ipx

(2π)2
[θ(−x0)θ(p0)+ θ(x0)θ(−p0)]δ(p2 − t)

=
∫

d3 p

(2π)3
e−ipx

p2 − t − iε
,

we finally get

T = 2P
∫ ∞

0
dts(t)

1

q2 − t
(22)

with identity 1
f ±iε = P 1

f ∓ iπδ( f ). Since s(t) � 0 is real,
T (q) and therefore �(q) are both real. The spectral density
is in fact a very important function, which will be studied
elsewhere [11].

Thus, from equation (19), we obtain an important relation
between the real part and the imaginary part of conductivity σ

Im σ(ω) = −ω�(ω
2, 0)

2
,

Reσ(ω) = P
∫

ds

π

Im σ(s)

ω − s
.

(23)

This relationship between the real part and the imaginary
part of conductivity is beyond the perturbation approach and
can be considered as a Kramers–Krönig relation of graphene
conductivity. We hope an advanced study of graphene will
check this relation.

Equation (23) is one of the main results of this paper. It
points out that the electrical response of graphene can never
be considered as a pure resistance, but a resistance connected
in parallel with a capacitor with capacitivity �(ω2, 0)/2.
Furthermore, due to the obvious relation between Im σ and �,
Im σ reflects the state structure of graphene. Im σ is therefore
a non-perturbational probe to detect the state structure of
graphene. From this viewpoint, Im σ is a more basic quantity
than Re σ . Furthermore, equation (23) is irrelevant to the
idiographic interactions, which means that, the equation holds
under very general conditions, such as the existence of
impurities or excitations in graphene.

More recent works reveal that graphene is rarely flat,
i.e. there are always ripples in graphene. The nonvanishing
curvature, raised by ripples, will lead to two main effects:

altering the group velocity of quasiparticles and introducing
effective gauge fields. The first effect possibly makes a
global correction to conductivity, which may be absorbed
into the redefinition of spectral function, �. Furthermore,
since the holding of equation (23) is irrelevant to idiographic
interactions, we conclude that the Kramers–Krönig relation is
still valid for corrugated graphene.

Equation (23) supplies one possible way to study
the discrepancy of dc conductivity between theory and
experiment. One may first perform perturbational computing
to the imaginary part of ac conductivity and then compare
the perturbational result with experiments at different
frequencies. The discrepancy between these results reveals a
contribution which cannot be ascribed to perturbational theory.
Furthermore, the complete contributions to dc conductivity are
not only from the Dirac nodal point, but from the spectral
structure of carriers.

4. Perturbational calculation of dc conductivity

We here deduce the dc conductivity in a perturbational
approximation. After that we shall discuss an ambiguity
besides the one pointed out in [6].

We begin with a perturbational calculation of Tμν .
Noticing that 〈0|bp f ap′

f
a†

pi
b†

p′
i
|0〉 = (2π)4δ2(p f − p′

i )δ
2(p′

f −
pi) and that we have normal ordering of operators in current
density, we have, for the perturbational ground state,

〈0|Jμ(x)Jμ(0)|0〉 =
∫

d2p d2p′

(2π)42p02p′
0

Fμ
μ e−i(p+p′)x , (24)

where Fμ
μ = v̄(p′)γ μu(p)ū(p)γμv(p′). Taking advantage of

equation (3), one finds,

Fμ
μ = −2p · p′ − 6m2 = −(p + p′)2 − 4m2. (25)

Tμ
μ ≡ T is given by a direct computing

T (x) = i(θ(x0)− θ(−x0))(� − 4m2)K ′(x), (26)

where

K ′(x) =
∫

d2p d2p′

(2π)42p02p′
0

(ei(p+p′)x − e−i(p+p′)x)

=
∫

dp(eipx + e−ipx)

(2π)22p0

∫
dp(eipx − e−ipx)

(2π)22p0
.

From∫
dp(eipx + e−ipx)

(2π)22p0
=

∫
d3 pe−ipx

(2π)2
δ(p2 − m2),

∫
dp (eipx − e−ipx)

(2π)22p0
=

∫
d3 pe−ipx

(2π)2
δ(p2 − m2) sgn(p0),

the Fourier transformation of K ′ is

K ′(p) = −
∫

d3q

2π
δ((p−q)2−m2)δ(q2−m2) sgn(q0). (27)

Here p does not need to be on the mass shell, i.e. p0 =√
p2 + m2 is not needed, if the integrating factor is d3 p. We

4
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focus on the case of p = 0 (or p is a time-like vector). Letting
K (x) = (� − 4m2)K ′(x) and K (q0) = K (q0,q = 0), we get

K (q0) = q2
0 + 4m2

4q0
θ(q2

0 − 4m2). (28)

The nonzero contribution to K (q0) is |q0|〉2m. To simplify we
let m = 0. Thus T (x0,p = 0) = 1

4 (θ(−x0) − θ(x0))δ
′(x0).

Since �(q0, q = 0) = − 1
2q2

0
T (q0, q = 0), we find the dc

conductivity of graphene

σ = 1
8

∫ 0

−∞
dx1

∫ x1

−∞
dx2(θ(−x2)− θ(x2))δ

′(x2), (29)

utilizing equation (16). Notice that in the above equation
we have made a subtraction �(x0,p) = ∂�(x0,p)

∂x0
= 0 at

x0 → −∞.
However, the functions, such as δ′(x) and θ(x), are not

well defined. This means that there possibly exists ambiguity
in equation (29). This ambiguity is different to the one pointed
out in [6].

We consider dc conductivity here. First let δ(x) be the
simplest form, δ1(x) = 0 for |x | > a

2 and δ1(x) = 1/a for
|x | < a

2 . In this case we obtain σ1 = 1
16 = π

8
1

2π � 0.39
2π

utilizing equation (29). This is just the result obtained in [4].
Meanwhile, we can also let δ(x) be a somewhat complex
form [6], δ2(x) = 1

π

η

x2+η2 . This time we get σ2 = 4+π2

16π
1

2π �
0.28
2π . Finally, we can also set δ3(x) = 1

4T0
cosh2( x

2T0
). We find

σ3 = π(1/2+ln 2)
12

1
2π � 0.31

2π � 1
π

1
2π , the numeric value of which

is in agreement with that in [3].
To see the physical meaning of T0 in δ3(x), we write out

explicitly: θ(−x) = 1
1+et/T0

. The role of T0 is something like

temperature, which means that T −1
0 symbolizes the disorder.

a−1 in δ1(x) and η in δ2(x) [6] play a similar role. Since
σ1, σ2 and σ3 are a−, η− and T0-independent respectively,
we conclude that the dc conductivity is almost temperature-
independent near zero temperature, although the conductivity
value is ambiguous because of the ‘poor’ behavior of the δ-
function. This is verified by experiments [12].

This is an unexpected occasion because the conductivity,
a physical observable quantity, varies with different definitions
of the δ− function. The ambiguity is associated with the
different definitions of the δ− function in the ultraviolet
region. One may argue that we can eliminate the ambiguity
by a standard renormalization schedule in quantum field
theory [9, 10], however, this elimination still contributes to the
special definition of the δ− function in the ultraviolet region.
We think that the ambiguity implies that the dc conductivity
of graphene depends on the behavior of quasielectrons at
high energy as well as the behavior at the Dirac nodal point.
This is also pointed out by the Kramers–Krönig relation in
equation (23). Unfortunately, the linear dispersion relation
of quasielectrons does not hold at high energy, which means
that different numeric values based on linear dispersion and
perturbational approaches need correction. On the other hand,
when we study the electrical response of graphene, we always
perform calculations utilizing diagrams composed of different
Green functions. To include higher corrections, we should use

loop diagrams. However, since coupling g = 2πe2/εh̄vF is
not small, i.e. g ∼ 1, the loop corrections cannot be ignored
compared to the leading order.

One possibly expects that the corrections to conductivity
given above are not large. If this is the case, our
computations and others [3, 4] indicate that about 30% of the
full conductivity is from the perturbational contribution. A
question is raised, then, as to where the other contributions
to conductivity come from. A generalized version of
equation (28) tells us that, from the definition of state density
s(q), the perturbational contribution to state density is

2πs pt(q) = q2 + 4m2

4q
θ(q2 − 4m2), (30)

at q0 > 0. The θ -function in this equation reveals that, s pt only
includes the contribution from pairs of free quasielectrons and
holes. However, since there are complex interactions between
electrons and holes, electrons and holes may be combined
into excitations [14, 15], or in other words, it is questionable
whether we should consider quasielectrons in graphene as a
two-dimensional electron gas with no interactions. To study
the electrical responses completely, we must also consider
the contribution of excitations (and impurities), attributed to
equation (22). In standard field theory it is difficult to study
the contribution perturbationally. We often nominate the
contribution as being a non-perturbational one, such as we
did in [13]. Since the coupling is large on graphene, such a
contribution cannot be ignored when one consider electrical
responses. Apparently, if m is large enough, the nonzero
contribution from excitons appears before q2 = 4m2. We shall
discuss such a contribution elsewhere [11].

5. Discussion

The relationship between the imaginary part, Im σ , and the real
part, Re σ , of ac conductivity is given in this paper. Im σ
depends directly on details of state structure and one can
study state structure from Im σ . We consider it to be a non-
perturbational probe to detect the state structure of graphene
and it is therefore a very important quantity. Our formulas are
Lorentz-covariant and local-gauge-invariant.

We also perform an explicit perturbational calculation
using quantum field theory. The computation shows that the
conductivity is mainly manipulated by the momentum–energy
relation and there is little nexus between the conductivity
and the state density near the Dirac nodal point. The
computation reveals that, due to the ‘wicked’ behavior of the
δ-function, there is ambiguity in the graphene conductivity
calculations. We argue that the full perturbational studies need
two corrections: one is due to the incorrect value of carrier
linear dispersion at high energy and the other is the higher
order correction. Besides these corrections, however, there
is a further correction which is called the non-perturbational
correction in this paper. This correction comes from the
contribution of excitations, which are attributed to electron–
electron interactions.
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